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Abstract
Tensor network (TN) is developing rapidly into
a powerful machine learning (ML) model that is
built upon quantum theories and methods. Here,
we introduce the generative TN classifier (GTNC),
which is demonstrated to possess unique advan-
tages over other relevant and well-established M-
L models such as support vector machines and
naive Bayes classifiers. In specific, the GTNC is
shown to rely much less on the hyper-parameters,
and to be an adaptive model that avoids over-fitting
by limiting the parameter complexity according to
the entanglement. GTNC paves new paths to the
quantum-inspired probabilistic ML models based
on TN.

1 Introduction
Tensor network (TN)[Ran et al., 2020] is a powerful tool that
originates from quantum physics, and in recent years exhibits
impressive performance and great potential in the field of ma-
chine learning (ML) [Stoudenmire and Schwab, 2016][Liu et
al., 2019][Han et al., 2018][Sun et al., 2020]. Compared with
the conventional ML models such as neural network (NN),
it is expected that the unique advantages of TN are from its
foundations and successful applications in quantum physics.
In specific, TN provides an efficient representation for quan-
tum states, operators and circuit models; it is built upon and
interpreted by the quantum many-body physics and quantum
information theories.

Motivated by the inspiring progresses on TN ML, it be-
comes more and more urgent to demonstrated and understand
the advantages of TN in practical ML problems. In this work,
we introduce a generative-type of TN for classification tasks,
known as generative TN classifier (GTNC) originally pro-
posed in [Sun et al., 2020]. In Sec. 2, we explain the ba-
sic ideas of GTNC with necessary formula. In Sec. 3, we
demonstrate the main numerical results and discuss about the
advantages of GTNC over other models. Our code of the im-
plementation is available at 1
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1The code of the implementation is available at

Figure 1: (Color online) Illustration of the process in GTNC for
classification. See the details in the text.

Table 1: Testing accuracy of GTN on MNIST and fashion-MNIST,
compared with SVC, NB, a non-parametric baseline model and neu-
ral network.

model GTNC Baseline SVC NBC CNN

MNIST 0.98 0.97 0.98 0.84 0.98
FMNIST 0.88 0.85 0.89 0.71 0.94

2 Generative Tensor Network Classifier
The central idea of GTNC is to train the generative model
[Han et al., 2018] using TN for each classes, and classify a
given sample by comparing its probabilities from the genera-
tive models, i.e.,

c̃ = argmaxcP (x|c), (1)

where c denotes the label corresponding to each class, c̃ de-
notes the prediction, and x = (x1, x2, · · · , xL) denotes the
features of the sample to be classified (Fig. 1). The P (x|c)
of each c is given by a generative TN [Han et al., 2018].

GTNC is different from the discriminative TN classi-
fiers (DTNC’s), which model directly the mapping from
the sample to the prediction of its classification as c̃ =
argmaxcP (c|x). Two approaches are mathematically con-
nected by Bayes’ equation as c̃ = argmaxcP (c|x) =
argmaxcP (x|c)P (c). Assuming the prior P (c = 1) =
P (c = 2) = · · · = P (Nc), we have argmaxcP (c|x) =
argmaxcP (x|c).
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Note that GTNC is not a “full” Bayesian treatment, as, for
instance, that the causal relationship (represented by the con-
ditional probabilities) among the features are difficult to infer
from the TN representing P (x|c). To have a full Bayesian
solution, one should carefully define the positivity and nor-
malization conditions of the tensors in the TN, which leads to
the Bayesian TN [Ran, 2019].

In GTNC, P (x|c) is obtained in a quantum-inspired way.
To this end, we introduce the quantum state Ψ(c) (named as
classifier states) to determine the joint probability distribution
of the features in each class. For any sample x, its probability
can be given as

P (x|c) = |ψ(x)TΨ(c)|2, (2)

where we have ψ(x) =
∏L
⊗i=1 φ(xi) with

φ(xi) = (cosxiπ/2, sinxiπ/2)T . (3)

Eq. (3) maps a feature xi to a normalized (column) vector
φ(xi) and is known as the feature map. The choice of the fea-
ture map is an assumption. ψ(x) is a 2L-component product
vector, called a “vectorized” sample.

Each Ψ(c) also has 2L components. Unlike ψ(x) that has a
simple product form, Ψ(c) possesses exponentially high com-
plexity. Therefore, we use TN to represent Ψ(c) to lower the
complexity to be polynomial. In detail, we choose the ma-
trix product state (MPS) that is given by the contraction of L
tensors as

Ψ
(c)
s1s2···sL =

∑
α1···αL−1

T [1,c]
s1,α1

T [2,c]
s2,α1α2

· · ·T [L,c]
sL,αL−1

. (4)

The indexes {s} are called physical indexes, whose dimen-
sions (denoted by d) equal to the dimension of the fea-
ture map [d = 2 for Eq. (3)]. {α} are called virtu-
al indexes, whose dimensions are called virtual dimensions
and (as hyper-parameters) control the parametric complexi-
ty of the MPS. The virtual dimensions are normally bounded
by another hyper-parameter χ called dimension cut-off, i.e.,
dim(αl) ≤ χ.

3 Results and discussions
We compare GTNC with naive Bayes classifiers (NBC’s),
support vector classifiers (SVC’s) and neural network which
possess several similarities and differences with GTNC (Tab.
1).

The central idea of the SVC is to classify the samples ac-
cording to the distances in a higher-dimensional space. Sim-
ilarly in GTNC, the samples are also mapped to the vector
space of dN dimensions (known as Hilbert space), and the
conditional probabilities [Eq. 2] for classification are linear to
the distances of the vectors in the Hilbert space. The “kernel”
of the GTNC is determined by the feature map. Our results
show that the GTNC achieves comparable or better accura-
cies without any prior knowledge of the hyper-parameters. In
comparison, the accuracy of a SVC severely depends on the
hyper-parameters. Ref. [Sun et al., 2020] demonstrates that
the better performance of GTNC is due to that the samples

naturally cluster in the Hilbert space, making the classifica-
tions much easier.

We also compare GTNC with a baseline model. The idea is
to compute the probability P̃ (x|c) = ψ(x)T Ψ̄(c) with Ψ̄(c)

obtained by the training samples in the c-th classes and ψ(x)
from a testing sample to be classified. Note that Ψ̄(c) is ex-
tremely difficult to compute from its definition but P̃ (x|c) can
be obtained easily as P̃ (x|c) = 1

N |
∑
x′∈T ψ(x)Tψ(x′)|2.

Moreover, for the MPS, the virtual dimensions are bounded
by removing the small numbers in the entanglement spectra
and the corresponding channels (basis). This suggests that
the redundant information which might cause over-fitting are
carried by such basis. Therefore, GTNC is an adaptive mod-
el that avoids over-fitting by using moderately large virtual
dimensions.
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